Children Make Use of Relationships Across Meanings in Word Learning

Sammy Floyd and Adele E. Goldberg
Princeton University

Many words are associated with more than a single meaning. Words are sometimes “ambiguous,” applying to unrelated meanings, but the majority of frequent words are “polysemous” in that they apply to multiple related meanings. In a preregistered design that included 2 tasks, we tested adults’ and 4.5- to 7-year-old children’s ability to learn 4 novel polysemous words or 4 novel ambiguous words. Both children and adults demonstrated a polysemous over ambiguity learning advantage on each task after exposure, showing better learning of novel words with multiple related meanings than novel words with unrelated meanings. Stimuli in the polysemous condition were designed and then normed to guard against learners relying on a simple definition to distinguish the multiple target meanings for each word from foils. We retested available participants after a week-long delay without providing additional exposure and found that adults’ performance remained strong in the polysemous condition in 1 task, and children’s performance remained strong in the polysemous condition in both tasks. We conclude that participants are adept at learning polysemous words that vary along multiple dimensions. Current results are consistent with the idea that ambiguous meanings of a word compete, but polysemous meanings instead reinforce one another.

Keywords: polysemy, word learning, semantics, development, cognitive linguistics

Supplemental materials: http://dx.doi.org/10.1037/xlm0000821 supp

Learning the meaning of words is essential to successful communication. An underappreciated fact that complicates word learning is the ubiquity of polysemous words, which are words with multiple conventional meanings (or “senses”) that are related to one another (Baayen, Piepenbrock, & Van Rijn, 1993; Durkin & Manning, 1989; Fellbaum, 1998; McCarthy, 1997; Rodd, Gaskell, & Marslen-Wilson, 2002). It has been estimated that between 40 to 84% of English words have polysemous senses (Durkin & Manning, 1989; Fellbaum, 1998; McCarthy, 1997; Rodd et al., 2002; Zipf, 1945). Extended senses can be evoked spontaneously in certain predictable ways (Nunberg, 1979; Pustejovsky, 1991; Rabagliati, Marcus, & Pylläkäinen, 2010). For example, we can refer to a work of art by the artist’s name (a Picasso), and as long as the context makes it clear that the name refers to an artist, we can do this without having witnessed the name used this way previously (e.g., A Chella Man sold for a thousand dollars). Recent work has demonstrated that children are able to take advantage of this type of productive or “regular” polysemy as they prefer a regular extension of a word’s meaning over a semantically unrelated extension (Rabagliati et al., 2010; Srinivasan, Al-Mughairy, Foushee, & Barner, 2017; Srinivasan, Berner, & Rabagliati, 2019; Srinivasan & Snedeker, 2011, 2014). That is, when a novel word is illustrated with one sense, children may expect the word to apply in a way that is systematically related. For instance, a word that refers to a certain material can be extended to apply to an object made of that material (as exists for the English words, glass and tin; Srinivasan et al., 2019); a word that refers to an animal can be extended to apply to the meat of that animal (as exists for chicken; Srinivasan & Snedeker, 2014); the word for a container can be used to refer to the container’s contents (e.g., wash vs. pour a bowl; Rabagliati et al., 2010); a word for an object can be used to refer to the object’s abstract content (e.g., a heavy vs. interesting book; Srinivasan & Snedeker, 2011); and a word for a tool can be used to refer to an action performed with that tool (a hammer, to hammer; Srinivasan et al., 2017). While these studies involved exposing children to novel words, each of the semantic relationships between familiar and new meanings already exists in English and is likely known by children, as exemplified by the instances provided. These same extension patterns appear in other languages as well, suggesting that they may be predictable (Srinivasan & Rabagliati, 2015).

The multiple meanings of many words are often not predictable on the basis of any productive generalization or regular pattern (Fillmore, 1992; Fillmore & Langendoen, 1971; François, 2008; Rabagliati & Snedeker, 2013). For example, while pen caps, baseball caps, and bottle caps are all called caps, the relationships among these meanings do not recur in the same way in other words. The apparent similarity among the meanings of cap is not sufficient to predict that the same word will be used; a baseball
cap is called gorra in Spanish, while a pen cap is called tapa (de lapicero). Cross-linguistic differences such as these suggest that speakers often must learn the range of meanings individual words conventionally allow in their language (Bracken, Degani, Eddington, & Tokowicz, 2017; Lehrer, 1990; Malt, 2010; Murphy, 2004; Pinker, 2007; Pye, 2017). Indeed, even the patterns that we might consider regular, such as extending a label based on a shared shape across meanings, are known to develop through exposure (Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson, 2002). Work on “colexification” across languages reveals recurring patterns of shared labels for concepts that are semantically related, with recurring polysemy being more common among languages that are diachronically related or in contact (Jackson et al., 2019; San Roque, Kendrick, Norcliffe, & Majid, 2018). Work on historical semantics has emphasized that the range of meanings associated with a given word typically changes over time, which provides further evidence that conventional meanings of words are often not predictable on the basis of productive mechanisms (Brinton & Traugott, 2005; Murphy, 2004; Sweetser, 1990).

While modeling work shows that the emergence of new senses is best explained by semantic closeness to a preceding meaning (Ramiro, Srinivasan, Malt, & Xu, 2018), it is uncontroversial that new meanings become conventional through exposure. For example, developmental work has documented that children are influenced by differences in the ways their language conventionally encodes polysemy from early stages of production. For example, English use the same preposition, off, to mean “removal from a flat surface” and “removal of enveloping clothing” (he took the plate off the table, he took off his coat), while Dutch children learn distinct terms for those meanings (af and uit, respectively; Bowerman, 1996; Bowerman & Choi, 2001; Choi, McDonough, Bowerman, & Mandler, 1999). Here, we consider the question of how challenging it is for children to learn and retain multiple novel, irregular conventions that vary along more than a single dimension.

The learners’ task would be easier if the meaning of each word in any language at any given point of time could be captured by a single definition or set of necessary and sufficient features. However, as Wittgenstein (1953) established, the range of conventional meanings that common words allow is typically not captured by a single overarching definition. For example, we might attempt to define the English word cap in a general way as “something which tightly covers the top of something.” However, this potential definition does not accurately predict when the word cap is appropriate and when it is not; it would incorrectly predict corks, lids, and roofs could be called caps, and it would not predict mushroom caps or cap and trade, as they do not tightly cover anything. In fact, words are routinely extended along multiple dimensions (see Figure 1), only loosely clustering together according to family resemblance structures (Klein & Murphy, 2001, 2002; Wittgenstein, 1953), radial categories in which a central meaning is extended along more than one different dimension (Lakoff, 1987), or chaining from one sense to another (Heine, 1992; Ramiro et al., 2018). The fact that a word’s range of conventional senses is not predictable from a definition or single “summary” representation entails that children must learn, rather than simply predict, additional senses of many words from witnessing the conventions of their language. To date, it has not been established that children are able to learn the kinds of multidimensional and idiosyncratic relationships that commonly underlie the structure of conventionally polysemous meanings (e.g., cap in English). The present work, therefore, extends work by Srinivasan and others by investigating whether children are able to take advantage of relationships among conventionally polysemous meanings, which vary along more than one dimension simultaneously. We refer to words that are associated with multiple related meanings that are not predictable by a productive generalization and which cannot be subsumed by a single definition as simply POLYSEMOUS in what follows.

To learn multiple meanings, it is possible that word learners track meanings in a way that allows relationships among them to be represented through shared attributes or generalization across items. Clustered or overlapping meaning representations may activate and ultimately strengthen nearby related meanings through spreading activation, making it easier to integrate and retain related meanings compared with unrelated meanings. This type of learning mechanism would predict a learning advantage for conventional polysemous meanings over words with unrelated or ambiguous meanings. For example, the word bat is ambiguous insofar as baseball bats and flying bats do not share distinguishing features or relationships (see Figure 1). Work on children’s early semantic networks has found that children tend to produce words from more dense semantic and phonological neighborhoods earlier and that even infants are sensitive to semantic relations among different words and concepts (Arias-Trejo & Plunkett, 2013; Borovsky, Ellis, Evans, & Elman, 2015; Steyvers & Tenenbaum, 2005; Willits, Wojcik, Seidenberg, & Safran, 2013). This work has generally assumed that each word corresponds to a single node in a network, but it suggests that semantic relationships and domain knowledge facilitate word learning. The current work asks whether children take advantage of multiple distinct relationships among

![Figure 1. Polysemy: related senses associated with a single word form (e.g., cap) versus ambiguity/homonymy: unrelated senses associated with a single word form (e.g., bat).](image-url)
the meanings of a single word during learning to enhance the learning and retention of a word’s meanings.

Ambiguous words are far less common than polysemous words, accounting for only 4 to 7% of word meanings (Dautriche, 2015; Navigli & Ponzetto, 2012; Rodd et al., 2002). This difference in how prevalent polysemy is compared with ambiguity, raises another important motivation for the current research. Recent work has offered a speaker-based functional explanation for both polysemy and ambiguity (Harmon & Kapatsinski, 2017; Piantadosi, Tily, & Gibson, 2012). This work argues that speakers tend to add new meanings to existing words because repeating familiar words is easier. Evidence comes from the fact that shorter and more frequent words tend to have more senses than longer and less frequent words (Piantadosi et al., 2012), and a more frequent newly learned word is more likely to be extended than a less frequent novel word (Harmon & Kapatsinski, 2017). This form-based motivation treats ambiguity and polysemy as a unified phenomenon and, therefore does not directly address why polysemy is so much more common than ambiguity. In the current work, we directly test whether ease of learning and retention serve to advantage conventional polysemy over ambiguity from the learner’s perspective, over and above the advantages that accrue to the speaker.

In the following experiments, we introduce participants to novel words and novel (unfamiliar) meanings to control for prior knowledge, including possible metaphorical or functional interpretations. The meanings are represented by images of novel objects to provide well-controlled and brief exposure, as is common in word learning experiments (Gentner, 1978; Golinkoff, Hirsh-Pasek, Bailey, & Wenger, 1992; Horst & Hout, 2016; Landau, Smith, & Jones, 1998; Zetzersten, Wojcik, Benitez, & Saffran, 2018). By using novel words and novel meanings, we avoid potential transfer effects from the language children already know, and systematically avoid the type of productive extensions that are common cross-linguistically, which have been investigated by others (Srinivasan et al., 2017, 2019; Srinivasan & Sneedeke, 2011).

An independent line of work on nonlinguistic categorization serves to highlight the challenges children face. When adults are asked to classify stimuli based on multiple features, they generally require dozens of exposures and explicit feedback regarding accuracy on each trial (Murphy, 2004). The learning becomes more challenging as the number of relevant dimensions increases (Shepard, Hovland, & Jenkins, 1961; see also Kruschke, 1992, 2005; Nosofsky, 1984; Nosofsky, Gluck, Palmeri, McKinley, & Glauthier, 1994), and as more item-level learning is required for classification (Smith & Minda, 1998). The challenge of the word-learning task children face is further highlighted by the fact that classification tasks generally ask adults to sort entities into only one or two categories at a time, and explicit feedback is provided. Word learners must navigate many more unfamiliar words, many of which are associated with multiple meanings. It is as yet unclear whether it is any easier to learn that a single label applies to a set of related meanings compared with a set of unrelated meanings.

There is reason to hypothesize that novel words with multiple meanings will be learned easier if the meanings are related to one another, stemming from two independent lines of work: work on lexical access in adults and work on nonlinguistic categorization. Some of the earliest work on lexical access investigated whether all senses of ambiguous words were simultaneously activated (Swinney, 1979; Tabossi, Colombo, & Job, 1987). To the extent that polysemy was recognized, it was suggested that listeners selectively activated an “underspecified” or vague meaning comprised of only features shared by all meanings, allowing listeners to avoid committing to a more specific interpretation until after disambiguation from context (Frazier & Rayner, 1990). In fact, words are recognized faster in lexical-decision tasks when they have multiple related meanings, whereas multiple unrelated meanings do not confer the same advantage (Armstrong & Plaut, 2008; Azuma & Van Orden, 1997; Brocher et al., 2017; Klepousniotou & Baum, 2007; Rodd et al., 2002, 2012). Rodd (2004) has modeled the distinction between ambiguity and polysemy by positing a distributed representation of a word’s meanings in which unrelated meanings interfere with one another during retrieval in a way that related meanings do not. If, in parallel way, only ambiguous meanings interfere with one another in the initial stages of learning, we predict that it should be easier to learn and remember polysemous words when compared with ambiguous words.

Certain classic work on nonlinguistic categorization also suggests that related meanings of a word should be easier to learn than unrelated meanings of a word. Rosch and Mervis (1975) found that exemplars that shared many features with other members of a category and few features with members of other categories (more prototypical exemplars) were easier to learn than less prototypical exemplars of the same category. At the same time, this work was performed on categories with structure that participants were already familiar with (e.g., furniture, birds, and colors). Of current interest is the extent to which a new, latent complex structure will be useful to children during the initial learning of novel words. To ensure that perceptual similarity alone does not determine the requisite relationships required to learn the novel words in our paradigm, we report a Norming study below.

An additional issue raised in recent studies is that comprehension of newly learned novel words appears to degrade very quickly, particularly when participants are exposed to multiple candidate meanings at once (Aravind et al., 2018; Horst & Samuelson, 2008). This raises the possibility that participants simply rely on a strategy to satisfy experimental demands without retaining the meanings of new words (Trueswell, Medina, Hafri, & Gleitman, 2013), and is worrisome insofar as real-world vocabulary learning requires maintenance in long term memory. Therefore, to test whether multimeaning words are retained by participants, we retest all available learners after a delay of one a week.

2 If we establish this independent motivation for polysemy, it affords a different or complementary interpretation of the correlation between ease of production and variability of meanings observed by Piantadosi et al. (2012). Rather than speakers’ selecting words for additional meanings because they are frequent and, therefore, easy to produce, it may be, at least in part, that words become more frequent because they have been assigned additional meanings. That is, words that acquire additional meanings become relevant in a broader range of contexts. For example, the words file, web, and password, increased in frequency since the 1980s because they took on meanings related to new technology (Google N-grams). An increase in frequency can be expected to lead to greater ease of production because frequently used words tend to become reduced (family is pronounced with two syllables; needed is pronounced more quickly than kneaded; laboratory becomes lab, Bybee, 1985). The causation may well go in both directions: we choose easily pronounceable (or accessible) words for new meanings and words with additional meanings become more accessible.
To summarize, words in natural languages are commonly associated with a network of related conventional meanings. While polysemy is common, it is unclear whether children are influenced by relationships among meanings of a given word when those relationships must be gleaned during the word learning process itself. Current word learning models predict that all distinct potential meanings of a word should compete with one another and do not distinguish related from unrelated meanings. It is possible that children learn each word meaning independently, in which case learning polysemy would be essentially the same as learning ambiguity. On the other hand, related senses may reinforce each other to some extent during the learning process, predicting that polysemy should be easier to learn than ambiguity.

The present studies are the first that we know of to empirically compare the learning of polysemous and ambiguous words in a way that satisfies several desiderata. We present participants with stimuli that require them to learn word meanings that involve extensions across multiple dimensions, ensuring that no single feature can be used to identify the meanings (this is confirmed by the additional norming task). Both novel labels and novel senses are used to mitigate the effects of previous experience and world knowledge, and no feedback is provided. To increase the ecological validity of the results, multiple novel words are learned, and we retest participants after a week delay and without reexposure to investigate retention in long-term memory. We test 4.5- to 7-year-old children as well as adults, because children represent a more naive group of participants who are less likely than adults to rely on metalinguistic strategies (Gombert, 1992) or metacognitive skills (Flavell, Speer, Green, August, & Whitehurst, 1981), reducing the likelihood that their responses reflect learned strategies. Additionally, a number of findings in category and feature learning show young children are substantially more likely to attend widely to features, rather than categorize based on a single dimension as older children and adults tend to do (Deng & Sloutsky, 2016; Plebanek & Sloutsky, 2017; Smith & Kemler, 1977), indicating that young children may be well suited to learning the kinds of multidimensional word meanings that polysemous word learning requires. Finally, during this age range, children are known to learn five to seven words per day (Cunningham, 2005), so the possibility of a polysemy over ambiguity advantage would have implications for our understanding of lexical networks as they are being formed.

We recognize that in reality, relatedness between meanings falls on a cline; while some senses are highly related, others share fewer features, and appear closer to ambiguity (Geeraerts, 1993; Tugy, 1993). Therefore, in the two experiments described below, meanings for each word in a polysemous condition were constructed to share similarities along two dimensions, while meanings in an ambiguity condition were constructed by scrambling polysemous sets to reduce similarity between meanings. In a between-subjects design used in both experiments, adults and children were randomly assigned to either the polysemous condition or the ambiguity condition. During exposure, participants witnessed exposure videos that displayed a series of novel labels and pictures of novel objects (“meanings”), labeled with novel words, with pictures of foil objects interwoven.

To test whether participants successfully mapped the word forms to their intended targets, in a Label Matching task, Experiment 1 presented participants with four targets, each corresponding to a different word; participants were then asked to select the appropriate target for a particular word. To determine whether participants in fact construed multiple polysemous targets as targets of a single label and whether they were able to discriminate those target meanings from foils, a Sense Selection task (Experiment 2) asked participants to identify, for each of the four novel words, the three targets for each word, distinguishing them from five foils, which were witnessed but unlabeled during exposure. Thus, we determined whether participants were able to discriminate one target meaning from distractors which had been labeled differently (Experiment 1), and whether they could group commonly labeled targets together in the presence of also-witnessed foils (Experiment 2). All available participants were retested on the same two tasks after a week-long delay with no intervening exposure.

Experiment 1: Label Matching

As our interest is in vocabulary learning, Experiment 1 aims to determine whether adults and children were able to successfully match a novel label with its target meaning by selecting the target meaning from among three other meanings that had been labeled differently (distractors).

Method

Participants. 84 children between ages 4.5- to 7-years-old were recruited to the lab or at local elementary schools (M = 5:11, SD = 0.62) and 84 adults were recruited from Amazon’s Mechanical Turk (MTurk) through Turk Prime (Litman, Robinson, & Abberbock, 2017). An additional six children’s data were excluded from analysis for technical malfunction (N = 2), experimental error (N = 2), or missing data of birth (N = 2), and three adult participants’ data were missing because of technical malfunction. Sample size and analyses were preregistered for both adults and children at the first timepoint (see online supplemental materials). Participants were randomly and equally assigned to the polysemous or ambiguity condition. Children’s ages were matched across conditions (Polysemous: M = 5.88, SD = 0.67; Ambiguity: M = 5.90, SD = 0.57; β = −0.02, t = −0.375, p = .708). Longitudinal analyses were not preregistered only because we could not anticipate the rate of attrition and, thus, sample size, before data collection. Thirty-seven children were available to be tested again after the 1 week delay (mean age = 6:2, N = 18 in polysemous condition, N = 19 in ambiguity). Fifty-nine adults were also rerecruited after the delay (N = 31 in the polysemous condition, N = 28 in the ambiguity condition). All procedures were approved by the Princeton University Institutional Review Board (IRB). Before starting the study, adult participants and parents/guardians of child participants gave written consent.

Stimuli. In the polysemous condition, one “prototypical” meaning shared a distinctive feature with a second target and a different distinctive feature with the third target, reducing the possibility that a single feature could distinguish all three target objects from foil objects. In Figure 2 with targets from the polysemous condition, the object in the center is the prototype; it shares a handle with the object on the left and a material with the object on the right, while the objects on the left and right share no distinguishing features with each other. For each of the four novel words, five foil “meanings” were also created (see online supplemental materials).
Thus, participants in the polysemy condition witnessed four novel words, each assigned three novel, related meanings (for a total of 12 target meanings); the videos also contained five novel foil meanings for each word (a total of 20 foils). Stimuli were normed to determine the extent to which visual similarity alone could predict results by exposing a separate group of participants to the same exposure videos without sound (see Norming in Experiment 2 for details).

Participants in the Ambiguity condition heard the same four novel labels and witnessed the same 12 target meanings and the same 20 foils, but in this condition the 12 target meanings were scrambled across the sets constructed in polysemy so that the three meanings of each word were relatively unrelated to one another (see Figure 3).

Exposure. Each of the two exposure videos witnessed by each participant contained a stream of novel objects, presented one at a time for 2.5 s each. All target objects were named once by a human voice (“This is a kaisée,” labels counterbalanced), except the prototypical target object, which was shown and named twice. Ten foil images in each video were accompanied by the sound of a bell tone. The ambiguity sets were not constructed to share similarity, making it impossible to select a prototypical meaning, so the same image was displayed twice in both conditions. Each of the two videos exposed participants to two novel words, each one of which labeled three novel target objects, offering participants in each condition the opportunity to learn four novel words with 12 meanings. Each video was approximately 55 s long, with targets and foils presented in a fixed, pseudorandomized order, and the two videos in each condition were presented once each, in counterbalanced order.

Procedure. Web scripts prevented participants from rewatching any exposure videos, and participants could not rewind to extend exposure or skip through. Children were tested in a quiet area, using noise-canceling headphones. The experiment was formatted identically for children and adults, but was shown to children on an external monitor while the experimenter sat to the child’s left, also facing the screen. Children selected answers using a wireless mouse, except if unable to operate it, in which case the experimenter selected the options that the child indicated by pointing.

Test. On each of six trials, participants were prompted with one of the words they had been exposed to, and were shown four meanings, one from each of the four different novel words they had witnessed (see Figure 4). The meanings that had been witnessed twice in the videos (the “prototypes”) appeared on the same trials, to control for the amount of exposure. Each participant was tested on all senses of two of the four words they had witnessed. Word assignment was randomized across participants.

Results

We entered adult and child results from each trial into separate mixed-effect models with condition (polysemy vs. ambiguity) as the fixed effect using RStudio and the lmerTest library and, as preregistered, fit the maximal random terms that convergence would allow (Barr et al., 2013; Kuznetsova, Brockhoff, & Christensen, 2017; RStudio, 2017).

Adults. Figure 5 shows performance in the two conditions for adults immediately after exposure in the top right panel. We analyzed results with a multilevel model which included condition as the fixed effect with random intercepts for subjects and items and a random slope and intercept for order. This model revealed significantly better accuracy in the polysemy condition in comparison with the ambiguity condition ($\beta = 0.30, t = 4.14, p = .002$).

Children. Figure 5 shows children’s performance at the time of exposure in the upper left panel. The preregistered multilevel model included condition as the fixed effect and random slopes and intercepts for order, subjects, and item. The model revealed significantly better accuracy in the Polysemy condition compared with the Ambiguity condition ($\beta = 0.31, t = 5.06, p = .002$).

Longitudinal Results

The bottom panel in Figure 5 shows participants’ accuracy averaged in each condition at the second timepoint. The children who returned for the retest did not differ in age across conditions (polysemy: $M = 6.09, SD = 0.38$; ambiguity: $M = 6.17, SD = 0.36$; $\beta = -0.07, t = -0.61, p = .54$). Retested children returned after an average of 7.19 days (range = 7–8 days, $SD = 0.4$ days), and this length was not significantly different across the conditions (polysemy: $M = 7.17$ days, $SD = 0.38$; ambiguity: $M = 7.21$ days, $SD = 0.42$; $\beta = -0.04, t = -0.33, p = .74$). Adults were rererecruited using Turk Prime (Litman et al., 2017) exactly 7 days later.

Children. To first determine whether the returning child participants were representative of the full child sample, we entered first timepoint results into a multilevel model to compare performance at exposure between the whole group with the returning subgroup, using Group, condition, and their interaction as fixed effects, and random intercepts and slopes for order, item, and subjects. This revealed no main effect of Group (full group; $\beta = -0.03, t = -0.45, p = .66$) and no interaction of condition (polysemy) and group ($\beta = -0.02, t = -0.30, p = .76$), but again...
revealed a main effect of the polysemy condition ($\beta = 0.30, t = 4.2, p = .001$).

The maximal converging model at the second timepoint included random intercepts and slopes for participants, items, and order, as well as condition as the fixed effect. Children again performed significantly better in the polysemy condition at the second time point ($\beta = 0.42, t = 6.63, p = 2.08e-08$). To determine if there were changes in accuracy across timepoints, we analyzed just those children who participated at both timepoints, using a model with timepoint, condition, and their interaction as the fixed effects and subjects, order, and items with random intercepts and slopes. This revealed a main effect of condition ($\beta = 0.33, t = 5.21, p = 6.45e-06$), and a main effect of timepoint (T2; $\beta = -0.14, t = -2.17, p = .04$) but no significant interaction of condition (polysemy) and timepoint (T2; $\beta = 0.09, t = 0.97, p = .33$).

**Adults.** To determine whether the returning adult participants were representative of the full adult sample, we entered group (full vs. returning subgroup), condition, and their interaction as main effects (and random intercepts and slopes for order, item, and subjects). This revealed no main effect of group (returning subgroup; $\beta = 0.01, t = 0.24, p = .81$) and no interaction of condition (polysemy) and group ($\beta = 0.00, t = 0.00, p = .99$), but again revealed a main effect of the polysemy condition ($\beta = 0.29, t = 3.38, p = .003$).

We also fit the maximal converging multilevel model to predict adult performance using condition as fixed effect, with random intercepts and slopes for subjects, items, and order. Unlike both the adult data at the first timepoint, and the child data at the first and second timepoints, adults’ polysemy advantage at the second timepoint did not approach significance ($\beta = 0.05, t = 0.6, p = .56$).

Finally, we analyzed across timepoints, including just those participants who participated at both timepoints ($n = 59$), again using a maximal converging model with timepoint, condition, and their interaction as fixed effects (random intercepts and slopes for subjects, item, and order). This analysis revealed a significant main effect of the polysemy condition ($\beta = 0.31, t = 4.21, p = .0002$), but only a marginal effect for timepoint ($\beta = -0.14, t = -1.91, p = .06$), and a significant interaction between time and polysemy ($\beta = -0.26, t = -2.76, p = .007$). The interaction may suggest

---

**Figure 4.** Sample test stimuli in the Label Matching task. Each of the four objects displayed had been labeled by a different word during exposure. See the online article for the color version of this figure.

**Figure 5.** Average accuracy in the Label Matching task for the ambiguity and polysemy groups. Child performance (4.5- to 7-years-old) at exposure in upper left panel ($n = 42$ per condition), adults’ performance at exposure in upper right panel ($n = 42$ per condition); 4.5- to 7-year-old children’s performance 1 week later in bottom left panel ($n = 18$ in polysemy, $n = 19$ in ambiguity); adults’ performance 1 week later in bottom right panel ($n = 31$ in polysemy, $n = 28$ in ambiguity). Error bars represent bootstrapped 95% confidence intervals. See the online article for the color version of this figure.
that though performance was lower overall for adults at the second timepoint, adults forgot significantly more in the polysemy condition. Alternatively, it may be because of the floor effect for ambiguity at the second timepoint: that is, for performance in the ambiguity condition to decay at the same rate as the polysemy condition, it would have had to be reliably below chance at timepoint two (see Comparisons to chance).

**Age comparisons.** Our preregistered analyses reveal that the polysemy over ambiguity advantage was present both in children and in adults at the first timepoint, and an exploratory comparison between age groups allowed us to investigate whether it was significantly different at either age. We first compared performance at time of exposure, fitting a model with age group, condition, and interaction as fixed effects and once again, the maximal converging structure including a random intercept for subjects and random slopes and intercepts for items and order. The model revealed a significant effect of condition (polysemy: $\beta = 0.30, t = 5.52, p = 4.42e-07$), but no significant effect for age group (children; $\beta = -0.08, t = -1.51, p = .13$), and no significant interaction ($\beta = 0.002, t = 0.02, p = .98$), suggesting that both adults and children exhibit the polysemy advantage to roughly the same degree at the first timepoint. We also compared group performance across conditions at the second timepoint, and found a significant interaction between condition and age group ($\beta = 0.38, t = 4.13, p = 7.18e-05$), but no main effect for condition ($\beta = 0.05, t = 0.63, p = .53$) or age group ($\beta = -0.07, t = -1.04, p = .32$). This suggests that, unlike Timepoint 1, in which both adults and children showed a significant polysemy advantage, children at the second timepoint performed significantly better in the polysemy condition than adults, who showed little evidence of a polysemy advantage.

We also performed an exploratory analysis to determine if the polysemy advantage was present throughout the age range within the child population (4.5 to 7 years). We calculated a median split on age (median = 6.01 years) and entered each groups’ data into the model with condition as the fixed effect (and random intercepts for subjects and items and a random slope and intercept for order). This model revealed a significant effect of condition (polysemy: $\beta = 0.25, t = 3.11, p = .01$) in the younger half of participants. Using the same model used to predict performance in the older half, the model again revealed a significant effect of the polysemy condition ($\beta = 0.38, t = 5.89, p = 1.51e-05$), and a model predicting performance across the two groups using condition and age group found no significant interaction ($\beta = -0.13, t = -1.41, p = .17$), suggesting that the polysemy over ambiguity advantage is present throughout our child sample to a similar degree (random terms included an intercept for subjects and slopes and intercepts for items and block number).

**Comparisons With Chance**

Final exploratory analyses include comparisons to chance. Bootstrapped 95% confidence intervals (CIs) show that children were above chance (0.25) in both conditions at Timepoint 1 (ambiguity: $M = 0.337, 95\% \text{ CI} = 0.278-0.393$; polysemy: $M = 0.643, 95\% \text{ CI} = 0.579-0.698$), suggesting that children were to some extent able to learn ambiguous words, consistent with past findings showing knowledge of ambiguous words at young ages (Backscheider & Gelman, 1995). Yet, ambiguity was challenging for children, given how close to chance their performance was in the ambiguity condition. Further, their retention of ambiguous words overlapped with chance after the week delay (ambiguity: $M = 0.237, 95\% \text{ CI} [0.158, 0.316]$; polysemy: $M = 0.657, 95\% \text{ CI} [0.556, 0.731]$), indicating that they required more input than our exposure provided to retain multiple, unrelated meanings. In adults, we found performance parallel to children at the first timepoint (ambiguity: $M = 0.417, 95\% \text{ CI} [0.353, 0.476]$, polysemy: $M = 0.722, 95\% \text{ CI} [0.659, 0.774]$). However, their performance deteriorated after 7 days, resulting in a significant reduction in the polysemy condition across the timepoints, and worse performance overall at the second timepoint, where no polysemy over ambiguity learning advantage was evident. However, in a nonpreregistered comparison with chance, we did find consistent above-chance performance in polysemy at the second timepoint for adults: $M = 0.355, 95\% \text{ CI} [0.285, 0.419]$, while their performance was not reliably above chance for ambiguity, as CIs overlapped with 0.25: $M = 0.310, 95\% \text{ CI} [0.238, 0.375]$.

**Discussion**

As predicted, both children and adults showed a significant polysemy over ambiguity advantage immediately after exposure, demonstrating that words with related meanings are easier to learn than words with unrelated meanings. The effect remained strong in children after a 1-week delay without reexposure. Adult performance decayed after the week delay, and no polysemy over ambiguity advantage was evident (although performance only in polysemy condition remained above chance). There are two possible explanations for the difference between adults and children after delay without assuming that word learning is a critically different process in adults and children at this age. First, children were retested in person with the same experimenter and in the same location, while adults were rerecruited online. Because of this, children had additional cues to retrieve their past experience with the task and, thus, the exposure; we know contextual cues such as physical surroundings can have significant effects on lexical memory (Baddeley, Eysenck, & Anderson, 2009; Egstrom, Wetzman, Baddeley, Cuccaro, & Willis, 1972; Goldin & Baddeley, 1975). Because adults were recruited online, it was impossible to ensure they were in a similar context at the second exposure. Another, nonexclusive possibility is that adults’ more densely packed lexical and phonological networks impeded their ability to retrieve the novel word labels they had learned a week before. Recall that the task required participants to determine which of four meanings corresponded to the particular label they were prompted with. Accurate performance was possible by a process of elimination: if two novel meanings were recalled with different labels, the witnessed label must belong to one of the remaining options. This strategy would require specific memory of word labels for the other items each trial, however adults in particular have been shown to struggle in name- and word-retrieval tasks (Dell & Gordon, 2003; Ramscar, Hendrix, Shaoul, Milin, & Baayen, 2014). If their denser lexicons made the task more difficult, then a different task that primarily depends on memory of meanings rather than memory of label-to-meaning mappings may reveal lasting evidence for stronger performance on polysemous word meanings. In Experiment 2, we provided participants with a task that evaluated this possibility.
Experiment 2: Sense Selection

Experiment 1 demonstrated that both children and adults have a stronger memory for polysemous word-to-meaning mappings when asked to discriminate them from differently labeled distractors immediately after exposure, and for children, the polysemy over ambiguity advantage remained after a week delay. One concern about the task in Experiment 1 is that participants were only asked to assign a single meaning to each label on each trial, so that they may have relied on memory of one or two novel words to perform well. Another issue is that Experiment 1 required participants to construe differently labeled targets as dissimilar, but it did not directly test whether participants were able to group together commonly labeled polysemous targets as sharing the same label. Therefore, in Experiment 2, we ask participants to discriminate the targets from a set of foils that had been witnessed during the same exposure video.

Specifically, on each trial participants were presented with three items from a single meaning set along with five foils, and were prompted with a label. Because this task presents participants with all three targets simultaneously, we report a separate norming study with a different group of participants to rule out two possible alternative explanations for participants’ success in learning multiple polysemous meanings. First, it is possible that a priori visual similarity between the polysemous items is sufficient to explain participants’ successful identification of targets at test. It is also possible that the higher relative exposure to the prototype in the videos may have facilitated learning of the prototype in each set of meanings, but that participants simply used this representation to infer the other two targets on-the-fly, without learning the two additional meanings. In our norming task, we rule out both of these possibilities by giving participants the same exposure as in the main task without label information, and then asking them to select the three items which they think are likely to share a label. Because participants were always presented with items from differently labeled sets on each trial in the prior experiment, examining these explanations was not possible in Experiment 1.

The task of Experiment 2 does not require memory for specific labels. It instead probes whether participants’ memory for which items have been labeled to test whether identification of the three target meanings of each word benefits from similarities between exemplars in the polysemy condition. This task then also allows us to address the possibility that adults’ low performance at the second timepoint in Experiment 1 was because of the challenge of learning multiple polysemous meanings. This task then also allows us to address the possibility that adults’ low performance at the second timepoint in Experiment 1 was because of the challenge of learning multiple polysemous meanings. First, it is possible that a priori visual similarity between the polysemous items is sufficient to explain participants’ successful identification of targets at test. It is also possible that the higher relative exposure to the prototype in the videos may have facilitated learning of the prototype in each set of meanings, but that participants simply used this representation to infer the other two targets on-the-fly, without learning the two additional meanings. In our norming task, we rule out both of these possibilities by giving participants the same exposure as in the main task without label information, and then asking them to select the three items which they think are likely to share a label. Because participants were always presented with items from differently labeled sets on each trial in the prior experiment, examining these explanations was not possible in Experiment 1.

The task of Experiment 2 does not require memory for specific labels. It instead probes whether participants’ memory for which items have been labeled to test whether identification of the three target meanings of each word benefits from similarities between exemplars in the polysemy condition. This task then also allows us to address the possibility that adults’ low performance at the second timepoint in Experiment 1 was because of the challenge of learning multiple polysemous meanings. This task then also allows us to address the possibility that adults’ low performance at the second timepoint in Experiment 1 was because of the challenge of learning multiple polysemous meanings. First, it is possible that a priori visual similarity between the polysemous items is sufficient to explain participants’ successful identification of targets at test. It is also possible that the higher relative exposure to the prototype in the videos may have facilitated learning of the prototype in each set of meanings, but that participants simply used this representation to infer the other two targets on-the-fly, without learning the two additional meanings. In our norming task, we rule out both of these possibilities by giving participants the same exposure as in the main task without label information, and then asking them to select the three items which they think are likely to share a label. Because participants were always presented with items from differently labeled sets on each trial in the prior experiment, examining these explanations was not possible in Experiment 1.

Method

Participants. The same 84 children and 84 adults from Experiment 1 were tested. As in Experiment 1, the same 37 children and 59 adults were tested again after a week, with no intervening exposure (again, children: N = 18 in polysemy, N = 19 in ambiguity; adults: N = 31 in polysemy, N = 28 in ambiguity).

In a norming study, a separate group of 84 adult participants were recruited from MTurk (preregistered). This group witnessed the identical visual exposure but without any verbal labels, ensuring that they would see the prototypical objects twice as in the main task, and were then presented with the identical test items used in the main analyses (see Test) with the following instructions: “Three of these objects share a label. Your job is to guess which one” (see online supplemental materials for additional norming).

Stimuli and Exposure. Adults and children took part in Experiment 2 immediately after Experiment 1. This order was used, rather than the reverse or a counterbalanced order, to minimize possible learning during the first task that would be relevant to the second task. Recall that Experiment 1 provided an indication that the targets on each trial had been labeled differently from one another because participants were asked to select the kaisee/nona/gazer/veebo from among a set of objects that had been witnessed with other labels. However, it did not provide evidence of which three meanings belonged together with a label, which was required for accuracy in Experiment 2. Experiment 2, on the other hand, provided information that could be used in Experiment 1, because in Experiment 2, only targets that matched the label in the prompt were displayed to participants, along with a set of foils that had not been labeled. Remaining concerns about Experiment 2 being unduly influenced by Experiment 1 were addressed by a separate sample of 92 adult participants who were tested only on Experiment 2. Those results confirmed the same pattern of data reported here (see SI for results). It remains possible that the testing at Timepoint 2 was affected by the testing at Timepoint 1, but this was unavoidable and, importantly, whatever advantage was gleaned at Timepoint 1 for the polysemy condition was also available for the ambiguity condition.

Test. Participants performed a Sense Selection task in which they were shown three meanings of a word along with five of the foils from the corresponding exposure video, and were asked to “Pick three kaisees,” (the four nonce labels counterbalanced across conditions, see Figure 6).

Results

Adults. Figure 7 shows performance in the two conditions for both age groups, with chance at 1.125. 3 The preregistered maximal converging multilevel model included condition as the fixed effect, and subject, order, and items as random intercepts with random slopes for item and subject. It revealed significantly better accuracy in the polysemy condition in comparison with the ambiguity condition (β = 0.65, t = 4.26, p = .0005).

Children. The same model was preregistered for children, and the same maximal random structure converged for the child data. Children also performed significantly more accurately in the polysemy condition compared with the ambiguity condition (β = 0.84, t = 8.76, p = 2.64e-13).

Norming. We calculated “item predictability” scores for each novel word’s set of three meanings in each condition by averaging participants’ performance in the Norming (no exposure) study on each trial, and used these scores as a measure of predictability on the basis of similarity and on the basis of inference from higher frequency of the prototype (sample size and analysis prereg-

3 Each trial offered participants to earn a score of 0, 1, 2, or 3 for selecting up to 3 correct targets out of 8, so, chance performance is calculated to be 1.125 out of 3, on the basis of the following: \[ \sum_{i=1}^{8} p(i) \] where \( p(i) = \frac{C(5, (3-i)) \cdot C(3, i)}{C(8,3)} \).
Children’s scores on the second task, one week after exposure. Consistent with both the adult data at the first timepoint and the child data at the first and second timepoints, the model (including random inter-

erated). Item predictability was included as a fixed effect with random slopes and intercepts for subjects and order in both populations. The models for both adults and children still revealed a significant advantage for adults and children in the polysemy condition, (adults: $\beta = 0.60, t = 2.91, p = .02$), (children: $\beta = 0.78, t = 4.86, p = .0005$). In fact, visual predictability was not a significant predictor for either group: adults ($\beta = 0.08, t = 0.19, p = .86$), or children ($\beta = 0.15, t = 0.56, p = .59$). Thus, our prediction was confirmed: the polysemy over ambiguity advantage reflects a process of word learning and is not explained by the predictability of the items.

**Longitudinal results.** Once again, the exploratory analyses for Timepoint 2 included timepoint and its interaction with condition as a fixed effect. The bottom panel of Figure 7 shows accuracy averaged in each condition at the second timepoint in each group.

**Children.** The bottom left quadrant of Figure 7 shows children’s scores on the second task, one week after exposure. The model predicting performance of children at follow-up revealed a significant effect of the polysemy condition ($\beta = 1.02, t = 7.88, p = 1.63e-10$) including random intercepts and slopes for participants and order, and random intercepts for item (this analysis required model comparison using between two models with equally complex random structure). To determine if there were changes in accuracy across timepoints, we again analyzed just those children who participated at both timepoints using a model with timepoint, condition, and their interaction as the fixed effects, and random intercepts and slopes for subjects, items, and order. The polysemy over ambiguity advantage held; in fact, there was no evidence of memory decay after the week-long delay. That is, there was a main effect of condition (polysemy: $\beta = 0.96, t = 7.80, p = 2.05e-09$), but no main effect of timepoint (T2; $\beta = -0.17, t = -1.44, p = .16$) and no significant interaction of condition (polysemy) and timepoint (T2; $\beta = 0.06, t = 0.35, p = .73$).

Again, to ensure that these participants were representative of our main sample on this task as well as the preceding task, we entered results into a multilevel model to compare performance on this task at the first timepoint between the whole group and the subgroup that returned for the follow up, using group, condition, and their interaction as main effects with maximal random structure (random intercepts for subjects random slopes and intercepts for item and order). Reassuringly, this revealed no main effect of group (full group: $\beta = -0.01, t = -0.11, p = .91$) and no interaction of condition and group ($\beta = -0.07, t = -0.48, p = .64$), but again revealed a main effect of the polysemy condition ($\beta = 0.84, t = 47, p = 1.91e-10$).

**Adults.** The bottom right quadrant of Figure 7 shows adults’ scores on the second task one week after exposure. Consistent with both the adult data at the first timepoint and the child data at the first and second timepoints, the model (including random inter-

Figure 6. Polysemy trial (one of four). Participants were prompted with a label and asked to select three target meanings. See the online article for the color version of this figure.

Figure 7. Average accuracy in the Sense Selection task for the ambiguity and polysemy groups. Child performance (4.5- to 7-years-old) at exposure in upper left panel (n = 42 per condition), adults’ performance at exposure in upper right panel (n = 42 per condition); 4.5- to 7-year-old children’s performance 1 week later in bottom left panel (n = 18 in polysemy, n = 19 in ambiguity); adults’ performance 1 week later in bottom right panel (n = 31 in polysemy, n = 28 in ambiguity). Error bars represent bootstrapped 95% confidence intervals. See the online article for the color version of this figure.
cepts and slopes for subjects, items, and order) found a significant polysemy advantage at follow up ($\beta = 0.76, t = 3.17, p = .01$).

We also analyzed across timepoints, taking just participants from both timepoints ($n = 59$), and again using a model with timepoint, condition, and their interaction as fixed effects and maximal converging random structure that included random intercepts and slopes for subject, order, and item. This analysis revealed a significant main effect of the polysemy condition ($\beta = 0.77, t = 3.91, p = .0009$), but no effect of timepoint ($\beta = -0.24, t = -1.24, p = .23$) or interaction between timepoint and polysemy ($\beta = -0.01, t = -0.04, p = .97$), suggesting that in this task, the polysemy advantage was present to the same extent across both timepoints.

To confirm that the returning adult participants were representative of the full adult sample in this task as well as the task reported in the first experiment, we entered results into a multilevel model to compare performance at exposure between the whole group with the returning subgroup, using group, condition, and their interaction as main effects (random intercepts and slopes for order, item, and subjects). This revealed no main effect of group (returning subgroup; $\beta = -0.004, t = -0.05, p = .96$) and no interaction of condition (polysemy) and group ($\beta = 0.03, t = 0.24, p = .81$), but a main effect of the polysemy condition ($\beta = 0.65, t = 4.04, p = .0004$).

**Age Comparisons**

To determine whether there was an effect of age on performance at the first timepoint on the Sense Selection task, we fit a model with age group (adults vs. kids) and condition as fixed effects (random slopes and intercepts for subjects, item, and order). This exploratory model revealed a significant effect of condition (polysemy; $\beta = 0.65, t = 4.67, p = .0004$) and age group (children; $\beta = -0.63, t = -4.52, p = .002141$), and no significant interaction of condition (polysemy) and age group (children; $\beta = 0.19, t = 1.05, p = .31$). Adults’ better performance suggests that unlike what was found for the Label Matching task of Experiment 1, the benefit of polysemy over ambiguity in learner’s ability to discriminate targets from foils in the Sense Selection task may continue to develop with age. At the second timepoint, we also compared children and adults using a model with condition, age group, and their interaction as fixed effects (random effects and intercepts for subjects, items, and order), and found a significant effect of polysemy ($\beta = 0.76, t = 4.37, p = .001$) and of age group (children; $\beta = -0.56, t = -3.07, p = .006$), but no significant interaction ($\beta = 0.27, t = 1.07, p = .30$). Therefore, while the polysemy advantage was present across both groups, and children did not do as well as adults overall, there was no evidence that the polysemy advantage was attenuated in children in particular.

To investigate possible age effects further, in another nonpre-registered analysis, we entered child data with a median split by age (median = 6.01 years) to determine if the polysemy advantage was present throughout the age range in the sample. First, we entered each half of the data into a multilevel model with condition as the fixed effect (random intercepts for subjects and items and a random slope and intercept for order). This model once again revealed a significant effect of condition (polysemy; $\beta = 0.73, t = 2.95, p = .01$) in the younger half of participants, and the same model found that the polysemy condition again predicted better performance ($\beta = 0.97, t = 6.68, p = 1.38e-06$). A model predicting performance across the two groups using condition and age group (random intercepts and slopes for items and order and random intercepts for subjects) found no significant interaction of age group within the child sample (older half) and condition (polysemy; $\beta = -0.24, t = -0.86, p = .40$), again finding a main effect of condition (polysemy; $\beta = 0.97, t = 6.40, p = 1.23e-07$), and no main effect of age group ($\beta = -0.14, t = -0.72, p = .48$).

**Comparisons to chance.** Bootstrapped 95% CIs were used to compare with chance performance of selecting between 0 and 3 correct targets out of a possible eight items (see Results, Footnote 3). These exploratory analyses showed that children were reliably above chance in the polysemy condition at Timepoint 1 (polysemy; $M = 1.96, 95\% CI [1.83, 2.08]$), but not in the ambiguity condition as the bootstrapped 95% CI overlap with chance [1.03, 1.21]. Furthermore, while children’s performance after a week delay remained above chance in polysemy ($M = 1.96, 95\% CI [1.74, 2.15]$, performance in ambiguity fell reliably below ($M = 0.93, 95\% CI [0.79, 1.07]$). Such low performance in children at follow-up in Experiment 2 may be considered surprising, as adults seemed to do comparatively better in Experiment 2 at follow-up compared with Experiment 1. At Timepoint 1 in Experiment 2, adults were also reliably above chance (ambiguity: $M = 1.75, 95\% CI [1.62, 1.88]$; polysemy: $M = 2.40, 95\% CI [2.26, 2.50]$), but unlike in Experiment 1, adult performance was reliably above chance in both conditions by the second timepoint (ambiguity: $M = 1.49, 95\% CI [1.30, 1.66]$, polysemy: $M = 2.25, 95\% CI [2.09, 2.38]$).

**Discussion.** Children and adults both showed a significant polysemy over ambiguity advantage and the younger half of children (4.5- to 7-year-olds) performed as well and showed as strong of a polysemy advantage as the older children. Both children and adults retained the polysemy advantage after a one week delay without reexposure. Norming results confirm that this robust polysemy advantage cannot be attributed to visual similarity among items, as including visual similarity in the model had no significant effect for either children or adults. Adults outperformed children at both timepoints, unlike in Experiment 1, which is consistent with the idea that adults’ poorer performance after the delay in Experiment 1 was likely because of the challenge of retrieving new (low-frequency) words from their denser lexicons.

**General Discussion**

The present experiments investigated children and adults’ ability to learn four novel words that were assigned three distinct meanings apiece. We manipulated whether the three meanings of each word were related to one another (polysemy condition) or not (ambiguity condition). The meanings of each word in the polysemy condition were designed so that they shared no single distinguishing feature but instead varied along two different dimensions, reducing the possibility that participants could rely on a simple definition or a single extension rule to distinguish the three target meanings for each word from foils. Recall that novel labels and novel meanings were used to mitigate the effects of previous experience. No feedback was provided, and available participants were tested immediately after exposure and again after a 1-week delay.

In each of two tasks, we consistently found a **polysemy over ambiguity advantage** in learning the novel words immediately...
CHILDREN'S USE OF MEANINGS IN WORD LEARNING

after minimal exposure. That is, children and adults who were exposed to four novel polysemous words outperformed those who were exposed to four ambiguous words in their ability to map novel labels to the appropriate target meaning, distinguishing that meaning from otherwise-labeled distractors (Experiment 1). Participants who had witnessed four polysemous words also performed better at correctly identifying and distinguishing multiple target meanings for each novel word from foils (Experiment 2). Because our interest is in vocabulary learning, which is consolidated in long-term memory, we retested participants after a week-long delay without providing additional exposure.

After confirming that the participants who took part in the testing after a week did not differ significantly in age or performance from the full group, we performed the identical analyses for the data at the second time point. Remarkably, children’s performance in the polysemous condition after a week remained well above their performance in the ambiguity condition in the label mapping task (Experiment 1) and in fact showed no decay after a week in the Sense Selection task (Experiment 2). Adults’ performance fell to chance in the label mapping task after the week-long delay, possibly because adults’ larger lexicons made the retrieval of target words from long-term memory more demanding (Dell & Gordon, 2003; Ramscar et al., 2014). In the second task, which required participants to discriminate between commonly grouped meanings and foils and did not require lexical access, adults showed the same polysemous > ambiguity advantage evident in children (Experiment 2).

The present findings are consistent with work on nonlinguistic category learning insofar as meanings that shared more overlapping features were easier to categorize than those that shared fewer distinguishing features. This suggests, perhaps not surprisingly, that word-learning may well be a special type of category learning, as long as “category” is not assumed to require a single vague or summary representation, but is instead understood to allow a range of subtypes with their own unique properties. Word learning is special insofar as learners need to use the labels as a cue to multidimensional category membership, and must learn the arbitrary mappings between exemplars and labels without receiving explicit instruction nor corrective feedback. The current findings are also consistent with prior work that suggests that ambiguous meanings of a word compete with one another during comprehension but polysemous meanings do not. If polysemous meanings are represented as partially overlapping, distributed representations (Rodd et al., 2012), polysemous meanings of a word may reinforce one another rather than compete with one another as is assumed by current models of word learning.

Particularly because the polysemous we investigate is irregular, we do not assume that children necessarily expect or predict that the word label will extend in any particular way. The current exposure provided positive evidence that the distinct meanings were labeled by the same word, which appears to provide an advantage during integration and long-term consolidation. Earlier work had emphasized that unrelated meanings of a word label were easier to learn when each meaning was used as a distinct syntactic category or was from a wholly different semantic field (such as labeling a novel animal a glass). For example, consistent with the current findings, Casenhiser (2005) found that children were reluctant to assign a familiar noun like dog, the meaning, “monster.” At the same time, children were willing to reuse a label from a different grammatical category (a did could be a monster; see also Dautriche, Fible, Fievet, & Christophe, 2018). That is, ambiguous meanings are less difficult to learn when they apply in easily distinguishable contexts rather than in contexts that have the potential to overlap. In the current work, all novel words referred to artifacts and were used in nominal contexts, so the contexts provided were underdetermined and overlapping.

One reviewer suggested that participants in the polysemous condition may not have learned multiple meanings but instead only learned the prototypical meaning and then generalized that label to the other two meanings on the fly during the tasks. We agree with the suggestion that if participants somehow only learned the prototype, they could be expected to perform better in the polysemous condition than in the homonymn condition, because by design, the additional polysemous meanings were related to the prototype while the homonymous meanings were not. Yet, an explanation of why and how learners might only learn the prototype during exposure is required to make this route to better performance in the polysemous condition feasible. In natural languages, learning only one prototype per form is not sufficient, because extensions of the same prototypical meaning vary across different languages (see Introduction). Moreover, the results of the norming study show that exposing learners to two instances of the prototype instead of one does not predict performance on the task in either children or adults. We suggest that implicit recognition and comparison of the three labeled meanings results in their overlapping features being strengthened. That is, implicit recognition and comparison of the three labeled meanings allows a prototype to emerge, but critically, this perspective involves the recognition and comparison of multiple meanings.

If polysemous were rare in natural language, the question of how words with multiple meanings are learned might be reasonably put aside until the learning of words with single senses was better understood. However, polysemous is ubiquitous, particularly in the case of highly frequent and early learned words, and it commonly includes distinct meanings from the same grammatical category and semantic field (as is the case for the various senses of cap and other examples in the introduction). The relative lack of previous work on children’s learning of conventional, distinct but related meanings of words is surprising insofar as there has been a great deal of work emphasizing a finding that is the inverse of the multiple-meaning phenomenon reported here. In particular, learners generally disprefer assigning a second label to a concept (e.g., Clark, 1987; Markman & Wachtel, 1988; Merriman, Bowman, & MacWhinney, 1989). That is, learning synonymous labels is challenging and true synonymy is rare in languages. Near synonyms are almost always distinguishable in one way or another: for example, by dialect (pop vs. soda), register (buy vs. purchase), or attitude (thifty vs. stingy). Rather than assigning multiple labels to the same concept (synonymy), both polysemous and ambiguity involve assigning multiple concepts to the same label.

Production-based accounts have offered an explanation as to why polysemous and ambiguity are common across the world’s languages by emphasizing the advantage of reusing words that are easy to access and produce (Harmon & Kaptaszinski, 2017; Piantadosi et al., 2012). However, it is important to distinguish polysemous ambiguity, even though the distinction is undoubtedly gradient, because polysemous is so much more common than ambiguity (Dautriche, 2015; Navigli & Ponzetto, 2012; Rodd et al., 2002).
The current work provides the first evidence that we know of demonstrating that conventional (“irregular”) polysemous senses are easier to comprehend and retain than ambiguous senses.

We found little evidence of a developmental shift in the ability to learn novel polysemous words. Older children were not significantly more accurate in either task than younger children. Children in the Label Matching task performed as well as adults initially, and outperformed adults after the delay. Only in Experiment 2, which required participants to recall which meaning(s) were related, given a label, did adults significantly outperform children at both timepoints. Future work should test younger children to determine whether a polysemy over ambiguity advantage is evident in children younger than 4.5.

Future work is also needed to determine exactly why polysemy is markedly easier to learn than ambiguity, but we can speculate about several possible (nonexclusive) factors. Witnessing a word in a new context is likely to direct learners’ attention to features that were associated with the word’s meaning(s) in previous contexts. If some of those features are shared by a possible new meaning, the label would then provide an attentional bias toward the new referent. As each exemplar is to some extent unique, the same process may be operative at a lower level, for instance, even when we recognize a new dog as a *dog*, or a new door as a *door*. As already mentioned, there may be less of a distinction between the relationships among multiple exemplars required for categorization tasks and the relationships among distinct meanings of polysemous words (see also Geeraerts, 1993; Tuggy, 1993). If learners’ attention is directed to features that have been associated with the word in other contexts, we might expect this to occur both during word learning and during comprehension. Given that the present experiments found a surprisingly robust memory for polysemous meanings after a week-long delay, it may also be possible that distinct but related meanings reinforce one another, or reduce decay in memory, with learners either representing related senses as partially overlapping in memory or distinctly but with the relationship itself being encoded.

**Implications for Models of Human Word Learning**

We know of no current models of human word learning that predict differences in children’s learning of polysemous versus ambiguity. The present work suggests that it is essential to expand our models of human word learning so that they not only include the rich internal structure of word meanings, but also reflect relationships among multiple meanings of words. The majority of work on vocabulary learning has focused on how children learn a single meaning for a given novel label rather than how children learn multiple meanings of a word, as the task of assigning even a single meaning is recognized to be difficult (Gleitman, 1990; Quine, 1960). Current models of how children learn words have explicitly ignored the issues raised by words with multiple meanings. According to one recent model, “Propose but Verify” (PbV), the learner only tracks a single hypothesized word sense at any given point in time (Aravind et al., 2018; Medina, Snedeker, Trueswell, & Gleitman, 2011; Trueswell et al., 2013; Woodard, Gleitman, & Trueswell, 2016). This model aims to address the problem of referential ambiguity, in which learners must identify which referent in a scene is intended by a new word, but it inadvertently legislates both polysemy and ambiguity out of learners’ grasp. PbV proposes that a learner would hypothesize a meaning for the new word, but would then jettison that hypothesis and begin anew if the hypothesized meaning was not appropriate in next context. This problem with PbV has been recognized and a revised model, Pursuit, allows more than one hypothesized meaning to exist simultaneously (Stevens, Gleitman, Trueswell, & Yang, 2017). However, Pursuit represents each possible sense as atomic, with no internal structure (Stevens et al., 2017). Thus, it is unable to capture the distinction between learning ambiguity and polysemy, as shared features or relationships between meanings are not represented. Most cross-situational word learning models, which rely on experience across many learning instances, also represent meaning atomically, with correct meanings emerging from competition between consistent and inconsistent referents (e.g., Yu & Smith, 2007). In particular, each possible meaning of a word is equally in competition with all other potential senses. In the case of polysemy, this counterintuitively predicts that evidence for the “baseball cap” meaning of *cap* would be evidence against the “bottle cap” meaning of *cap*.

These models of word learning surely involve simplifications that were not intended to capture the true nature of word meanings, but there has been precious little work investigating how novel words with multiple conventionalized senses are initially learned, particularly by children. The current results make clear that theories of human word learning should be developed in two main ways. First, competition between meanings cannot undermine the possibility of multiple, distinct word meanings for a single form. While competition can be recruited during online disambiguation, when a unique word or meaning must be selected from among alternatives (Hinton & Shallice, 1991; Joordens & Besner, 1994; Kawamoto, Farrar, & Kello, 1994; Luce & Pisoni, 1998; McClelland & Elman, 1986; McMurray, Horst, & Samuelson, 2012; Rodd et al., 2002; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995), the robust learning evident in the present polysemy conditions suggests that encountering a related meaning of a word need not weaken—let alone eliminate—a distinct meaning of the same word in memory. We propose that multiple interpretations of a single word do not require competition between the meanings. Instead, we suggest new interpretations of a given word should be added to long term memory, with incorrect interpretations becoming less accessible over time from lack of reinforcement and from exposure to the meaning being labeled by the correct, conventional form (e.g., Goldberg, 2019).

Second, our results suggest the importance of distributed representations in learning. We propose that, rather than encoding or representing atomic and unanalyzed word meanings, that word learning requires representations with internal structure, without which it would be impossible to capture relatedness or similarity between attributes of a word’s meanings. For example, a representation such as *baseball cap* includes multiple attributes such as “covering” and “tightly fitting,” allowing it to share those attributes with *bottle cap*, rendering the two meanings semantically related. Outside the field of word learning, distributed representations are common. For example, feature-based representations are widely used in models of word recognition (Hinton & Shallice, 1991; Joordens & Besner, 1994; Kawamoto, 1993; Kawamoto et al., 1994; Rodd et al., 2002), although this work has tended to emphasize phonological and orthographic features as they are needed to recognize cases that require disambiguation. While
models of word learning have occasionally included hand-coded semantic features, to date, they have not yet addressed the question of how polysemous or ambiguous words are learned (Fazly, Alishahi, & Stevenson, 2010). It is possible that learning of unrelated meanings is more difficult because of interference during encoding or retrieval, rather than at the level of the meaning representation itself. However, we propose that the representations themselves are distributed rather than atomic, as some of our novel word meanings extend on a limited number of features, indicating that learners are guided by similarities between parts of meanings from their meaning representations, and not just the meanings as a whole.

We propose that it is important to combine these two components (additive meanings, distributed representations) to account for the polysemy over ambiguity learning advantage found in the present data. Distributed representations provide the foundation for meanings to relate to one another, and the additive process allows additional meanings that overlap or relate to existing meanings to strengthen additional, related meanings, rather than compete with them.

**Conclusion**

Many words are associated with more than a single meaning, and quite often, meanings of a word are semantically related to one another. This is especially true in the case of frequent words, many of which are learned by young children. While certain meaning extensions can be predicted by very general rules and, therefore, may be created on-the-fly, other meaning extensions need to be learned on the basis of experience because they are idiosyncratic to individual words. We predicted that the existence of semantic relationships among meanings of a word (polysemy) would facilitate the learning of that word when compared with learning a word that was associated with the same number of unrelated senses (ambiguity). Experiments exposed adults and 4.5- to 7-year-old children to four novel words, with three meanings each, during 2 min of exposure videos in which 20 foils were interspersed. The novel words were created using novel objects and novel labels to reduce interference from familiar labels or meanings. Two preregistered experiments confirmed our hypothesis, finding better accuracy for both age groups in the polysemy condition on both tasks: they were better able to identify which meaning was assigned a given label, a task that required distinguishing one of the label’s meanings from meanings associated with other labels (Experiment 1); and they were more accurate at the selection of multiple meanings for each word from among also-witnessed but unlabeled foils (Experiment 2).

Remarkably, after a full week’s delay, the subset of children who were available to be retested again showed the same polysemy over ambiguity advantage, despite having had no additional exposure. Moreover, the younger half of children performed as well as the older half, so that no clear developmental changes in the polysemy over ambiguity advantage were evident. Adult performance after the delay was mixed: in Experiment 1, only the polysemy condition remained above chance, but direct evidence of a polysemy over ambiguity advantage was absent, because of lower performance overall. On the other hand, adults did display a lasting polysemy over ambiguity advantage in Experiment 2, which did not require them to access and compare the meanings of multiple word labels. The recognition that polysemous meanings are ubiquitous and relatively easy to learn implies that the working assumption, commonly made in modeling work on human word-learning that words map uniquely onto a single meaning or that multiple potential meanings of a word are always in competition with one another, should be retired.

The current results raise new questions. Given that the current polysemy over ambiguity advantage was equally evident in younger and older children, we can ask, do children demonstrate the advantage at the very outset of vocabulary learning or do they need to learn to learn polysemous meanings? Because novel words can be learned to apply to related meanings after such limited and potentially confusing exposure, how is it that learners constrain meanings to apply to just the range that is specific to that word in the given language? The results also raise questions about populations that may have more difficulty recognizing relatedness among meanings. For example, individuals on the Autism spectrum have been claimed to hyper-focus on distinctions at the expense of recognizing relationships. Does this imply that individuals on the Autism spectrum lack the same polysemy over ambiguity advantage evident in neurotypicals (Floyd, Jeppsen, & Goldberg, 2020)? These and many other questions come to the fore once we recognize that words with multiple related meanings are more common and easier for typical learners than words with unrelated meanings.

**References**


Memory and Language, 46, 245–266. http://dx.doi.org/10.1006/jmla.2001.2810

Received July 1, 2019
Revision received January 6, 2020
Accepted January 6, 2020